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Wassily Hoeffding (J. Approximation Theory 4 (1971), 347-356) obtained a
convergence rate for the £1 norm of the approximation error, using Bernstein
polynomials for a wide class of functions. Here, by a different method of proof,
a similar result is obtained for the £2 norm.

1. INTRODUCTION AND SUMMARY

Let ep be a real-valued function on (0, 1). Following Hoeffding [7], we
define the related Bernstein polynomial of degree N - 1 as

where

BNep(t) = L ep«(i + 1)(N + I)) PN-U(t),
,~O,N-I

(
N - 1)PN-I,,(f) = i f'(i - t)N-I-i.

(1.1 )

(1.2)

This definition is a slight modification of the usual one and it allows functions
that are unbounded at °and 1.

Throughout this paper we will assume that ep is absolutely continuous on
(0, 1) with a continuous derivative 0/. The derivative must satisfy part (a) of
the following condition T at °and 1.

CONDITION T. We say a function o/(u) satisfies condition T at a point
P E [0, 1] if (a) for any E > °there exist.,. > °and °< q < 1 such that for
any UI , U2 E (0, 1) satisfying °< q( P - u2) < P - UI < P - U2 ~ T or°< q(u2 - p) < UI - P < U2 - P ~ '1", I 0/(U2)!o/(UI) - 1 I ~ E holds, and
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(b) there exist y > 0, M > 0, a ~ 0 such that for 0 < Ip - u I < y,
U E (0,1), if;(u) ~ M Iu - pia holds.

Part (a) of the condition says that if; may either approach infinity or zero at
o and 1 provided it does not vary too widly. Part (b) says if;(u) cannot
approach zero faster than some powre of u as u --+ 0 or 1. In particular, (a) is
satisfied if for some € > 0, if;(u) = 1p - U Ib for°< Ip - u I < € and some
finite b for p = 0, 1; or if lim"n if;(u) and lim,,~o if;(u) exist and are finite
and nonzero, or more generally if if;(u) is regularly varying in the sense of
Karamata as utI and u ,j, °(see [2] or [4]). We have taken the above
definition and comments of Stigler [10], in order that we may follow his
proofs for if; satisfying both parts (a) and (b), then upon making an obser
vation we drop part (b).

We give separate results for bounded and unbounded functions cpo We
give the bounded case first.

THEOREM 1. Let cp be an absolutely continuous function on (0, 1) with
derivative if;. Suppose cp and if; satisfy the conditions

(i) cp is bounded on [0, 1] and there exist 0 > °and to E (0, 1) such that
I cp(t) - cp(O)! :( Kt6, I cp(t) - cp(1)1 :( K(1 - t)6 for 0 :( t :( to,

(ii) if; is continuous on (0, 1), satisfies condition T, part (a) at 0 and 1, and

(iii) J2(cp) = J[if;(t)]2 t(I - t) dt < 00.

Then

(1.3)

DEFINITION. Define <P to be the class of functions cp specified in the
hypothesis of Theorem 1.

Hoeffding [7, Theorem 3] proves the related result for the constant
C = (2/e)I/2, J IBNCP(t) - cp(t)1 dt :( N-l/2J1(cp)C + D(N-l), where J1(cp) =
J [t(I - t)]1/2 I dcp I. In Theorem 4 of the same paper, he obtains an
asymptotic equality sharpening the last inequality, with C = (2/7T)1/2, for
any step function cp of bounded variation in [0, 1] having finitely many steps
in every closed subinterval of (0, 1). Furthermore, the equality holds irre
spective of whether J1( cp) is finite or not.

We cannot prove similar results for the L 2 norm of the error. That is, there
are no functions cp contained in <P for which there is equality in (1.3). Also,
we do not know if the finiteness of J2( cp) is needed for the L2 norm to be of
order N-l/2. It is interesting to note that our method of proof can be applied
to the ~ norm to produce the quantity J1(cp) in the asymptotic limit given
by Hoeffding [7, Theorem 4]. For this reason, we feel that the quantity J2(cp)
is the correct functional for the bound in (1.3). While our method of proof
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can give results for any L 1' norm with P ~ I, that of Hoeffding's paper
apparently cannot be extended beyond the L 1 norm.

The following theorem shows that the rate of N-1 in (1.3) cannot be
replaced by a faster one for the functions rp E flJ with II rp 112 :::;;; 1. (I thank
Professor R. H. Berk of Rutgers University for kindly formulating and
outlining the proof of Theorem 2.)

THEOREM 2. Let rp E flJ such that II rp 112 :::;;; I. Then

sup II BNrp - rp 112 ~ (27T)-1/2 N-1/2 + 0(N-1/2). (1.4)
ClJE<P

The next theorem applies to unbounded functions.

THEOREM 3. Let (i') replace (i) of Theorem I.

(i') There exists an s such that 0 < s :::;;; 2 for which there exists K,
8 > 0 such that

Then

[rp(t)]2 :::;;; K[t(1 - t)]-1+ S / 2H, O<t<1.

(1.5)

A theorem similar to Theorem 2 may be given for the class of functions
examined in Theorem 3.

In Section 2 we prove that the error term is bounded above by a quantity
that is much studied in the theory of rank and order statistics. In Section 3
we present some lemmas that give the formula for the asymptotic limit of the
variance of order statistics. We give the proofs of Theorems I, 2, and 3 in
Section 4. In Section 5 we make some remarks about the extension of the
method used for the L2 norm to obtain a bound on the L 1' norm with p > I.

2. RELATION TO RANK AND ORDER STATISTICS

In this paper we wish to use certain probabilistic techniques peculiar to
the theory of order and rank statistics. Suppose U1 , U2 , ... is a sequence of
independent random variables each having density feu) = I, 0 :::;;; u :::;;; I,
= 0 otherwise. And let R1 denote the rank of U1 among the partial sequence
U1 , ... , UN, for each N ~ 2 (we suppress the notational dependence on N
in R1). Further, define VN(t) to be a binomial random variable with parameters
N, t:

P(VN(t) = i) = PN,,(t),

where PN.i(t) is defined by (1.2).
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For a probability space (Q, 01, fL) and a measurable real-valued function X
we define the expectation of X as

EX = J X(w) fL(dw)
n

whenever it exists. Consequently we may rewrite (1.1) as

BNCP(t) = Ecp«VN_l(t) + 1)/(N + 1». (2.1)

Using the well-known fact (see [8])

peRl = i II VI = t) = P(VN-l(t) + 1 = i), i = 1,... , N,

we may subsequently write (2.1) as a conditional expectation,

Ecp«VN_l(t) + l)/(N + 1» = E{cp(Rl/(N + 1» II VI = t}. (2.2)

Conditional expectations and their properties are discussed in [3].
Thus properties of Bernstein polynomials may be determined by the use of

techniques developed for rank and order statistics. In Theorem 4, the L2-norm
degree of approximation is seen to be bounded by a familiar quantity in
statistics; for instance see [5].

THEOREM 4. Let f I cp 1
2 < 00. Then

I I BNrp(t) - rp(t)1 2dt :s;; E[rp(Vl) - rp(Rl/(N + 1»]2. (2.3)

Proof From (2.1) and (2.2) above we see that upon using the properties
of the conditional expectation

I I BNrp(t) - rp(t)\2 dt = I [E{rp(Rl/(N + 1» II VI = t1 - rp(t)]2 dt

= E[E{rp(Rl/(N + 1) - rp(Vl ) II Vl}]2.

The inequality follows upon application of Jensen's inequality. Ii

Note that a similar inequality will hold for L p , p ?o 1.
In Section 4 we study the rate at which the right-hand quantity of (2.3)

goes to zero.

3. SOME PRELIMINARY LEMMAS

We will state a lemma about the asymptotic behavior of the variance of an
order statistic. The conditions imposed will involve the following proposition,
due to Bickel [1] and restated by Stigler [10].
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Let U1N :( ... :( UNN be the ordered values of U1 ,... , UN. And let giN(u)
denote the density of UiN ; that is,

O<u<1. (3.1)

Consequently, Eep(UiN) = f ep(u) giN(u) duo Let us assume ljJ(t) is positive
on (0, I).

PROPOSITION 1. The following three statements are equivalent.

(i) There exists a finite T > 0 such that

lim Fep(t) = lim (1 - tt ep(t) = O.
t~O HI

(ii) There exists a finite m ;::;;: 0 such that

JrjJ(t)[t(1 - t)]m dt < 00.

(iii) For any finite number k > 0, there exists afinite r = r(k, ep) :( N/2
such that ifr ~ i :( N - r, then E I ep(UiN)!k < 00.

Furthermore, the above is implied by J2(ep) < 00.

The last part of the proposition follows from Jensen's inequality. Now we
state the following lemma and refer the reader to [10, Lemma 4, p. 775] for
the proof.

LEMMA 1. Let h(u) be a positive function such that for some k ;::;;: 0,
f h(u)[u(I - U)]k du < 00. Let bN be any sequence of integers such that
bN ---+ 00, bN/N ---+ 0 as N ---+ 00. Then for any m?: 0 there exists
A = A(m, k) > 0 such that

Nm J h(u) g'N(U) du ---+ 0
BNe(i)

uniformly for bN :( i ~ N - bN, where

(3.2)

BN(i) = [(i - I)/(N - 1) - MN(N - 1)-1,
(i - I)j(N - 1) + MN(N - 1)-1],

and
dN = [min(i - 1, N - i-I) log N]I/2.

We now state the crucial lemma, which is due to Stigler [10]. We will give
the proof, as it is special to our investigation.



312 DOUGLAS H. JONES

LEMMA 2. Let ep be absolutely continuous on (0, 1) with derivative 0/.
Assume there exists T > 0 such that limt-+o tTep(t) = limt-+l (l - t)T ep(t) = O.
If o/(t) is strictly positive on (0, I) and satisfies condition T at 0 and I, then for
any sequence of integers (bN) such that bN/log N ~ 00 and bN/N~ 0 as
N~ 00,

(3.3)

uniformlyfor Pi E [bN/N, 1 - bN/N] where (i) Pi = i/(N + 1) and (ii) a2(pi) =
0/2(Pi) p.(1 - Pi)'

Proof Let E > 0 and let N be large enough such that N-l/2(log N)1/2 < E,

and for bN ~ i ~ N - bN, E[ep(UiN) - ep(Pi)]2 exists. Let BN(i) be given as
in Lemma I.

Now we claim that

N f ([ep(u) - ep(piW/a2(pi» giN(u) du = O(N-l)
BNC(i)

uniformly for Pi E [bN/N, 1 - bN/N]. (3.4)

Now note that by condition T at 0,

so

~ N2a+3 f [ep(u) - ep(p.)]2 giN(u) duo
BNC(i)

Thus it follows upon expansion of the integrand, Proposition l(i) and (ii),
and Lemma 1 that (3.4) is uniformly O(N-l).

Now for large N, 0/ exists and is continuous on BN(i) for Pi E

[bN/N, 1 - bN/N], so by the mean-value theorem, ep(u) - ep(Pi) =

(u - Pi) o/«()i(U», where ()lu) is some point between u and Pi, for u E BN(i).
Let us denote o/i(U) = o/«()i(U», and define o/i(Pi) = O/(Pi)' We note that on
BN(i), since 0/ is strictly positive, o/i(U) satisfies condition T uniformly in [0, 1],
ifPi E [bN/N, 1 - bN/N]. Also,

(N + 2) I (u - Pi)2 giN(U) du = Pi(1 - Pi),

and from (3.4) with ep(x) = x, it follows that

[Pi(1 - P.)]-l(N + 2) f (u - Pi)2 giN(u) du = O(N-l).
BNC(il

(3.5)
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By (3.4) it is enough to show that
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tends to zero. But it can be easily seen that (3.6) is smaller in absolute value
than

which tends to zero uniformly for Pi E [bN/N, 1 - bN/N].

Remark 1. Note that the proof may be modified to obtain

(3.7)

with if; now only satisfying condition T, part (a), at °and 1. Consequently,
if; is not restricted to being strictly positive in the interior of [0, 1].

4. PROOF OF THEOREMS 1, 2, AND 3

We first prove the results for E[cp(UJ - cp(RI/(N + 1»]2 in place of
J [BNCP(t) - cp(t)]2 dt, then apply Theorem 4. Since cp is absolutely continuous,
it is the difference between two nondecreasing functions. Thus without loss
of generality we may assume cp to be nondecreasing. Hence if; will be non
negative. Let (b N ) satisfy Lemma 2 and be specified later. First we have

E[cp(UI) - cp(RI/(N + 1»]2

= N-I L E[CP(UiN) - CP(Pi)]2

= N-I C.~-l + N-b~l,N + bN.~-b) E[CP(UiN) - CP(Pi)]2. (4.1)

Upon applying Lemma 2, condition (iii) of Theorem 1, and Remark 1, we see
that the rightmost term satisfies

N-I L E[CP(UiN) - cp(p;)]2/N-IJ2(cp) = 1 + 0(1). (4.2)
bN,N-bN

Now we will show that under condition (i') of Theorem 3 the tail terms are
O(N-sj2), thus finishing the proof of Theorem 3. Then we note that
condition (i) of Theorem 1 implies condition (i') for CPI(t) = cp(t) - cp(o) and
CP2(t) = cp(t) - cp(1) with s = 2. Thus we reapply the prooffor the tail terms
to these modified functions.
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We claim that [cp(t)]2 ~ K[t(1 - t)]-l+s/2+6 implies E[cp(UiN) _ cp(p,)]2 ~
CPil+s/2+8 for some constant C, independent of N. In fact

so it is sufficient to prove E[CP(UiN)]2 ~ C(p;)-l+s/2H.

= K2N (~~ /) r(i - I + s/2 + 0)

x r(N - i + s/2 + 0) F(N - I + s/2 + 40).

Then by Sterling's formula, for some constant C, E[CP(UiN)]2 ~ C(p,)-l+S/2H.
Thus letting bN = (log N)2, we have

N-l L E[CP(U'N) - cp(pJJ2 ~ N-1C L (p,)-1+s/2H

l,bN l,bN

~ C(N + I) N-l f t-l+8/2+5 dt
O,(N+!l-'bN

= C(N + 1) N-lN-s/2bs,j2H/N6

= O(N-s/2). (4.3)

Upon combining (4.2), (4.3), and a similar relationship for the other tail,
we see that the result follows. II

ProofofTheorem2. Letj(u) = 0,0 ~ u ~ t,andj(u) = l,~· < u ~ 1.
Then it follows from Hoeffding's Theorem 4 that II BNf - fill =
(2/7T)l/2 flU) N-l/2 + O(N-l/2) = (27T)-1/2 N-l/2 + O(N-l/2). Further, for each
integer N ~ I there exists CPN E l/J such that Ilf - CPN 111 ~ N-l. This implies
11 BNf-BNCPNlll ~ N-l. Consequently we have II BNf-fill ~ II BNcpN- CPNlll +
2N-l. Using this and the Schwarz inequality,

sup II BNCP - cP 112 ~ II BNCPN - CPN III
Cj)E'1>

~ [I BNf -fill - 2N-l
= (27T)-1'2 N-l/2 + O(N-l). (4.4)
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5. EXTENSION AND CONJECTURES
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The mechanics of the proof apply equally well to f I BNep(t) - ep(t)lr dt
for any r ?: 1, provided an asymptotic expression similar to (3.5) for
E I U,N - Pi Ir is available. It is known (see [1]) that, for any ex > 0,
E I UiN - Pi \r = N-r/2[p,(1 - PiW/2 fLr + o(N-r/2) uniformly for Pi E [ex, I - ex],
where fLr = Coo I x Ir(211)-1/2 r x2

/ 2 dx. We conjecture that the uniformity
extends to Pi E [bN/N, I - bNIN], where bN is defined in Lemma 2. Thus
we should have, for even r,

f 1 BNep(t) ~ ep(t)!' dt ~ N-r/2J,.(ep) fLr + o(N-r/2)

for functions satisfying Theorem I where Jr(ep) = f ljir(t)[t(l - t)]'/2 dt < 00.
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