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Wassily Hoeffding (J. Approximation Theory 4 (1971), 347-356) obtained a
convergence rate for the L, norm of the approximation error, using Bernstein
polynomials for a wide class of functions. Here, by a different method of proof,
a similar result is obtained for the L, norm.

1. INTRODUCTION AND SUMMARY

Let ¢ be a real-valued function on (0, 1). Following Hoeffding [7], we
define the related Bernstein polynomial of degree N — 1 as

Byo(t) = 72 (i + DN + 1)) pr—1,41), (.1
where
Py = (VT 1) 16— ey (1)

This definition is a slight modification of the usual one and it allows functions
that are unbounded at 0 and 1.

Throughout this paper we will assume that ¢ is absolutely continuous on
(0, 1) with a continuous derivative 1. The derivative must satisfy part (a) of
the following condition T at 0 and 1.

ConprTioN T. We say a function () satisfies condition T at a point
p €0, 1]if (a) for any € > O there exist + > 0 and 0 << ¢ << 1 such that for
any u;,u,€(0,1) satisfying 0 < q(p—w) <p—u; <p—1u, <7 or
0 <qu,—p)<uy—p <up—p <7, | Pu)/dh(uy) — 1] < € holds, and
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(b) there exist y >0, M >0, a > 0 such that for 0 < |p —u| <y,
ue(0,1), y(u) > M | u — p [* holds.

Part (a) of the condition says that ¢ may either approach infinity or zero at
0 and 1 provided it does not vary too widly. Part (b) says (u) cannot
approach zero faster than some powre of u as u — 0 or 1. In particular, (a) is
satisfied if for some € > 0, Y(u) = |p —u [?for0 < |p — u| < e and some
finite b for p = 0, 1; or if lim,y (u) and lim,, ¥(u) exist and are finite
and nonzero, or more generally if () is regularly varying in the sense of
Karamata as u t1 and u | 0 (see [2] or [4]). We have taken the above
definition and comments of Stigler [10], in order that we may follow his
proofs for i satisfying both parts (a) and (b), then upon making an obser-
vation we drop part (b).

We give separate results for bounded and unbounded functions ¢. We
give the bounded case first.

THEOREM 1. Let ¢ be an absolutely continuous function on (0,1) with
derivative . Suppose ¢ and s satisfy the conditions

() o is bounded on [0, 1] and there exist 8 > 0 and t, € (0, 1) such that
[ () — @O < K%, | o(t) — p(D)] < K(I — )’ for 0 <1 < 1,
(@ii) 4 is continuous on (0, 1), satisfies condition T, part (a) at 0 and 1, and

(it) Jp) = [[P@OF (1 —#)dt < 0.
Then

| [Byg(t) — 9O dt < N-Yi(@) + o(N). (1.3)

DermniTiON,  Define @ to be the class of functions ¢ specified in the
hypothesis of Theorem 1.

Hoeffding [7, Theorem 3] proves the related result for the constant
C = (2/e)!?, [ | Bno(t) — @(t)l dt < N72AJ(9)C + O(N™Y), where Jy(p) =
J1t(1 — 1)]¥? |dp|. In Theorem 4 of the same paper, he obtains an
asymptotic equality sharpening the last inequality, with C = (2/m)'/2, for
any step function ¢ of bounded variation in [0, 1] having finitely many steps
in every closed subinterval of (0, 1). Furthermore, the equality holds irre-
spective of whether Jy(¢) is finite or not.

We cannot prove similar results for the L, norm of the error. That is, there
are no functions ¢ contained in @ for which there is equality in (1.3). Also,
we do not know if the finiteness of Jy(¢) is needed for the L, norm to be of
order N-1/2, It is interesting to note that our method of proof can be applied
to the L, norm to produce the quantity Jy(¢) in the asymptotic limit given
by Hoeffding [7, Theorem 4]. For this reason, we feel that the quantity Jx(¢)
is the correct functional for the bound in (1.3). While our method of proof
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can give results for any L, norm with p > 1, that of Hoeffding’s paper
apparently cannot be extended beyond the L, norm.

The following theorem shows that the rate of N-! in (1.3) cannot be
replaced by a faster one for the functions ¢ € @ with || ¢ |, < 1. (I thank
Professor R. H. Berk of Rutgers University for kindly formulating and
outlining the proof of Theorem 2.)

THEOREM 2. Let o € D such that || ¢ ll; < 1. Then
sup | Byg — @ lls = 2m) V2 N7V2 4 o(N7/3). (1.4)
ved

The next theorem applies to unbounded functions.

THEOREM 3. Let (i) replace (i) of Theorem 1.

(i') There exists an s such that 0 << s << 2 for which there exists K,
6 > 0 such that

[P < K[t(1 — e, 0 <t <1
Then

| Bug(t) — @0 dt = o). (1.5

A theorem similar to Theorem 2 may be given for the class of functions
examined in Theorem 3.

In Section 2 we prove that the error term is bounded above by a quantity
that is much studied in the theory of rank and order statistics. In Section 3
we present some lemmas that give the formula for the asymptotic limit of the
variance of order statistics. We give the proofs of Theorems 1, 2, and 3 in
Section 4. In Section 5 we make some remarks about the extension of the
method used for the L, norm to obtain a bound on the L, norm with p > 1.

2. RELATION TO RANK AND ORDER STATISTICS

In this paper we wish to use certain probabilistic techniques peculiar to
the theory of order and rank statistics. Suppose U, , U, ,... is a sequence of
independent random variables each having density f(u) =1, 0 <u < 1,
= 0 otherwise. And let R, denote the rank of U; among the partial sequence
Uy,..., Uy, for each N = 2 (we suppress the notational dependence on N
in R,). Further, define V'5(¢) to be a binomial random variable with parameters
N, 1

P(Vn(t) = 1) = pn..(2),

where py (t) is defined by (1.2).
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For a probability space (£2, (%, u) and a measurable real-valued function X
we define the expectation of X as

EX = L X(w) pldw)

whenever it exists. Consequently we may rewrite (1.1) as
Bno(t) = Ep((Vn-a(t) + DIN + 1)). @1
Using the well-known fact (see [8])
PR, =1i| U, =1t) = P(Vn4(t) + 1 =1), i=1,.,N,
we may subsequently write (2.1) as a conditional expectation,
Ep(Vn-ot) + D/(N + 1)) = E{p(R/(N + D) | Uy =1}, (2.2)

Conditional expectations and their properties are discussed in [3].

Thus properties of Bernstein polynomials may be determined by the use of
techniques developed for rank and order statistics. In Theorem 4, the L,-norm
degree of approximation is seen to be bounded by a familiar quantity in
statistics; for instance see [5].

THEOREM 4. Let || ¢ |* < co. Then
[ 1 Buo(t) — ¢ dt < E[p(Uy) — ¢RIV + DIF. 23)

Proof. From (2.1) and (2.2) above we see that upon using the properties
of the conditional expectation
[ 1 Bugtt) — @) dt = [ E(@(Ry(N + D) | Uy = 1} — g0}t
= E[E{p(Ry/(N + 1)) — o(Up || Up}I%.
The inequality follows upon application of Jensen’s inequality. ||

Note that a similar inequality will hold for L, , p > 1.
In Section 4 we study the rate at which the right-hand quantity of (2.3)
goes to zero.

3. SOME PRELIMINARY LEMMAS

We will state a lemma about the asymptotic behavior of the variance of an
order statistic. The conditions imposed will involve the following proposition,
due to Bickel [1] and restated by Stigler [10].
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Let U;ny < -+ << Upy be the ordered values of U ,..., Uy. And let g;n(u)
denote the density of U;y ; that is,

gun() = N(’lv - 11) Wl — w0 <u<1. (.1)

Consequently, Ep(U;x) = [ @(u) gin(u) du. Let us assume ifi(¢) is positive
on (0, 1).
PROPOSITION 1. The following three statements are equivalent.

(1) There exists a finite v > 0 such that
lg%t’(p(t) = ltigll (I — 1) e(t)=0.
(ii) There exists a finite m = 0 such that

[y — 01 de < .

v

(iii) For any finite number k > 0, there exists a finite r = r(k, ¢) << N/2
such that if r < i << N —r, then E| o(U;n)}* < o0,

Furthermore, the above is implied by Jy(p) < 0.

The last part of the proposition follows from Jensen’s inequality. Now we
state the following lemma and refer the reader to [10, Lemma 4, p. 775] for
the proof.

LemMmA 1. Let h(u) be a positive function such that for some k = 0,
Jh@u(l — w)*du < . Let by be any sequence of integers such that
by— o, by/N—>0 as N->oo. Then for any m = 0 there exists
A = Xm, k) > O such that

Nm f h(u) g,(1) du — 0 (3.2)
B\C )
uniformly for by < i << N — by, where
By(i) = [(i — D/(N — 1) — Adn(N — )7,
(G — D/N — 1) + Adpy(N — 1)1,
and

dy = [min(f — I, N — | — 1) log NJ*/2

We now state the crucial lemma, which is due to Stigler {10]. We will give
the proof, as it is special to our investigation.
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LEMMA 2. Let ¢ be absolutely continuous on (0, 1) with derivative iJ.
Assume there exists v > 0 such that lim, t7p(t) = lim,,; (1 — )" ¢(t) = 0.
If Y1) is strictly positive on (0, 1) and satisfies condition T at 0 and 1, then for
any sequence of integers (by) such that byflog N — o and by/N — 0 as
N — oo,

NE[p(Up) — ¢(p)F/e*(p) = 1 + o(1) (3.3)

uniformly for p; € [by/N, 1 — by/N]where (i) p; = i/(N + 1) and (ii) o¥(p;) =
¥ (p) p(1 — py).

Proof. Lete > 0and let N be large enough such that N-2/2(log N)1/? < ¢,
and for by <<i << N — by, Ele(U;n) — @(p,)} exists. Let By(i) be given as
in Lemma 1.

Now we claim that

N[ L 5 — pIFIo0) gn(e) s — OV
) uniformly for p; € [by/N, 1 — by/N]. (3.4)

Now note that by condition T at 0,

o7 ¥(p) < N[(p)I%  [f(p)I! < CN°

SO

N[ (o) — p(p)FIoXp)) gun(u) du
ByCG)

<Nu [ (o) — @(p)F an(w) du
BC(D)
Thus it follows upon expansion of the integrand, Proposition 1(i) and (ii),
and Lemma 1 that (3.4) is uniformly O(N-1).

Now for large N, ¢ exists and is continuous on By(i) for p;e
[bn/N, 1 — by/N], so by the mean-value theorem, o) — ¢(p;) =
(u — p,) Y(0:(u)), where 8,(u) is some point between u and p, , for u € By(i).
Let us denote ¢,(u) = (0,(u)), and define ¢(p;) = ¢(p;). We note that on
By (D), since ¢ is strictly positive, ,(u) satisfies condition T uniformly in [0, 1],
if p, e [by/N, 1 — by/N]. Also,

(N +2) | (@ — po)* gaxt@) du = pi(1 — po), (3.5)
and from (3.4) with ¢(x) = x, it follows that

[Pl — PPV +2) [ (= p? ganlu) du = O(N-Y).

BNC(1)
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By (3.4) it is enough to show that

i)

Pl =) N | = pPIIIT — g i (.6)

tends to zero. But it can be easily seen that (3.6) is smaller in absolute value
than

2 sup_ )/ P(p )P — 11,

ueBy(i

which tends to zero uniformly for p; e [by/N, 1 — by/N]. ||
Remark 1. Note that the proof may be modified to obtain

Elp(Uin) — @(p)l? = N7 + o(1)) a*(p3) 3.7

with ¢ now only satisfying condition T, part (a), at 0 and 1. Consequently,
i is not restricted to being strictly positive in the interior of [0, 1].

4. PROOF OF THEOREMS 1, 2, AND 3

We first prove the results for E[p(Uy) — @(Ry/(N 4+ 1) in place of
J [Bngp(t) — @(t)]? dt, then apply Theorem 4. Since ¢ is absolutely continuous,
it is the difference between two nondecreasing functions. Thus without loss
of generality we may assume ¢ to be nondecreasing. Hence i will be non-
negative. Let (by) satisfy Lemma 2 and be specified later. First we have

E[e(Uy) — o(Ry/(N + 1)
= N Z Ele(Uiy) — ¢(p)P?
_ N_l( L+ Y+ Y JERUN - ep)E @D

1,by~1  N-by+tLN by, N-by

Upon applying Lemma 2, condition (iii) of Theorem 1, and Remark 1, we see
that the rightmost term satisfies

N2 Y Elg(Ui) — g(pIFINUy(g) = T+ o). (42)

by N—by
Now we will show that under condition (i") of Theorem 3 the tail terms are
o(N—%/%), thus finishing the proof of Theorem 3. Then we note that
condition (i) of Theorem 1 implies condition (i’) for ¢,(t) = @(¢) — ¢(0) and
o) = @(t) — (1) with s = 2. Thus we reapply the proof for the tail terms
to these modified functions.
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We claim that [e(f)]? < K[t(1 — #)]71*+#/2% implies E[p(U;n) — ¢p(p)P <
Cp;*+** for some constant C, independent of N. In fact

Elep(U;n) — ¢(p)? < 2E[p(U;n)P + 2[e(p)P?

s0 it is sufficient to prove E[p(U,x)]? < C(p;)~1+s/2+3,
Elp(Un)]* = [ #*) guxtu) du

<K [l — )]0 () du

N —
[ —

— KN ( 1‘)1’(;’— I+ 52 + 9)

x D(N — i+ 52 + 8) (N — | + 5/2 + 49).

Then by Sterling’s formula, for some constant C, E[p(U;x)]? < C(p,) 1+5/2+s,
Thus letting by = (log N)?, we have

N1 Y Ele(Uy) — ¢(p)P < N7IC Y (p)trete

Lby 1.by

< C(N +1) N—lf (148248 gy

0,(N+1)"1py,
= C(N + 1) N-IN-=/2ps[2+8]Nb
= o(N—*72). 4.3)

Upon combining (4.2), (4.3), and a similar relationship for the other tail,
we see that the result follows. ||

Proof of Theorem?2. Letf(u) =0,0 <u < lLandf(uw) =1, <u < 1.
Then it follows from Hoeffding’s Theorem 4 that || Byf—fl; =
Q2 I(f) N2  o(N-Y2) = (27)~1/2 N-1/2 - o(N-1/2). Further, for each
integer N > 1 there exists ¢n € @ such that || f — ey |} < N~ This implies
| Bnf— Bnpnlls < N1 Consequently we have || Byf - flly <|| Byon— onll +
2N-1, Using this and the Schwarz inequality,

sup || Byg — @lis = | Bypn — onllt

e

2| Byf —flh — 2N
= (2m) L2 N-1U2 - o(NY). || (4.4)
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5. EXTENSION AND CONJECTURES

The mechanics of the proof apply equally well to [ | Byg(t) — ()| dt

for any r > 1, provided an asymptotic expression similar to (3.5) for

E
E

| Unx — p; | is available. It is known (see {l}) that, for any « >0,
| Un—pi I = N72[p,(1 - p)¥'® u, + o(N-"/?) uniformly for p; € [«, | - a],

where p, = _[fw | x |"(2m)~1/2 e=="/2 dx. We conjecture that the uniformity
extends to p; e [by/N, 1 — by/N], where by is defined in Lemma 2. Thus
we should have, for even r,

fo

[ 1 Bult) — g()r dt < N2, (g) iy +- o(N=T7)

r functions satisfying Theorem 1 where J,(p) = [ ¢7(£)[t(1 — 1)J/2 dt < o0.
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